文 | 沈韩杨
上下求索,只为真知
一、定义:
称重传感器实际上是一种将质量信号转变为可测量的电信号输出的装置。
二、性能指标:
考虑到不同使用地点的重力加速度和空气浮力对转换的影响,称重传感器的性能指标主要有线性误差、滞后误差、重复性误差、蠕变、零点温度特性和灵敏度温度特性等。
三、构成:
敏感元件
直接感受被测量(质量)并输出与被测量有确定关系的其他量的元件。如电阻应变式称重传感器的弹性体,是将被测物体的质量转变为形变;电容式称重传感器的弹性体将被测的质量转变为位移。
变换元件
又称传感元件,是将敏感元件的输出转变为便于测量的信号。如电阻应变式称重传感器的电阻应变计(或称电阻应变片),将弹性体的形变转换为电阻量的变化;电容式称重传感器的电容器,将弹性体的位移转变为电容量的变化。有时某些元件兼有敏感元件和变换元件两者的职能。如电压式称重传感器的压电材料,在外载荷的作用下,在发生变形的同时输出电量。
测量元件
将变换元件的输出变换为电信号,为进一步传输、处理、显示、记录或控制提供方便。如电阻应变式称重传感器中的电桥电路,压电式称重传感器的电荷前置放大器。
辅助电源
为传感器的电信号输出提供能量。一般称重传感器均需外链电源才能工作。因此,作为一个产品必须标明供电的要求,但不作为称重传感器的组成部分。有些传感器,如磁电式速度传感器,由于他输出的能量较大,故不需要辅助电源也能正常工作。所以并非所有传感器都要有辅助电源。
四、分类:
称重传感器有多种样式,主要有S型、悬臂型、轮辐式、板环式、膜盒式、桥式、柱筒式等几种样式。
称重传感器按转换方法分为光电式、液压式、电磁力式、电容式、磁极变形式、振动式、陀螺仪式、电阻应变式等8类,以电阻应变式使用最广。
光电式
包括光栅式和码盘式两种。
光栅式传感器利用光栅形成的莫尔条纹把角位移转换成光电信号(图2)。光栅有两块,一为固定光栅,另一为装在表盘轴上的移动光栅。加在承重台上的被测物通过传力杠杆系统使表盘轴旋转,带动移动光栅转动,使莫尔条纹也随之移动。利用光电管、转换电路和显示仪表,即可计算出移过的莫尔条纹数量,测出光栅转动角的大小,从而确定和读出被测物质量。
码盘式传感器(图3)的码盘(符号板)是一块装在表盘轴上的透明玻璃,上面带有按一定编码方法编定的黑白相间的代码。加在承重台上的被测物通过传力杠杆使表盘轴旋转时,码盘也随之转过一定角度。光电池将透过码盘接受光信号并转换成电信号,然后由电路进行数字处理,最后在显示器上显示出代表被测质量的数字。光电式传感器曾主要用在机电结合秤上。
液压式
在受被测物重力P作用时,液压油的压力增大,增大的程度与P成正比。测出压力的增大值,即可确定被测物的质量。液压式传感器结构简单而牢固,测量范围大,但准确度一般不超过1/100。
电容式
它利用电容器振荡电路的振荡频率f与极板间距d 的正比例关系工作(图6 )。极板有两块,一块固定不动,另一块可移动。在承重台加载被测物时,板簧挠曲,两极板之间的距离发生变化,电路的振荡频率也随之变化。测出频率的变化即可求出承重台上被测物的质量。电容式传感器耗电量少,造价低,准确度为1/200~1/500。
主要优点
电阻、电感和电容是电子技术中的三大类无源元件,电容式传感器是将被测量的变化转换成电容量变化的传感器,它实质上就是一个具有可变参数的电容器。
电容式传感器具有下列优点:
(1)高阻抗,小功率,仅需很低的输入能量。
(2)可获得较大的变化量,从而具有较高的信噪比和系统稳定性。
(3)动态响应快,工作频率可达几兆赫,稠b接触测量,被测物是导体或半导体均可。
(4)结构简单.适应性强,可在高低温、强辐射等恶劣的环境下工作,应用较广。
随着电子技术及计算机技术的发展,电容式传感器所存在的易受干扰和易受分布电容影响等缺点不断得以克服,而且还开发出容栅位移传感器和集成电容式传感器:因此它在非电量测量和自动检测中得到广泛应用,可测量压力、位移、转速、加速度、A度、厚度、液位、湿度、振动、成分含量等参数。电容式传感器有着很好的发展前景。
主要缺点
缺点一:输出阻抗高,负载能力差
缺点二:输出特性非线性
缺点三:寄生电容影响大
电磁力式
它利用承重台上的负荷与电磁力相平衡的原理工作。当承重台上放有被测物时,杠杆的一端向上倾斜;光电件检测出倾斜度信号,经放大后流入线圈,产生电磁力,使杠杆恢复至平衡状态。对产生电磁平衡力的电流进行数字转换,即可确定被测物质量。电磁力式传感器准确度高,可达1/2000~1/60000,但称量范围仅在几十毫克至10千克之间。
磁极变形式
铁磁元件在被测物重力作用下发生机械变形时,内部产生应力并引起导磁率变化,使绕在铁磁元件(磁极)两侧的次级线圈的感应电压也随之变化。测量出电压的变化量即可求出加到磁极上的力,进而确定被测物的质量。磁极变形式传感器的准确度不高,一般为1/100,适用于大吨位称量工作,称量范围为几十至几万千克。
振动式
弹性元件受力后,其固有振动频率与作用力的平方根成正比。测出固有频率的变化,即可求出被测物作用在弹性元件上的力,进而求出其质量。振动式传感器有振弦式和音叉式两种。
振弦式传感器的弹性元件是弦丝。当承重台上加有被测物时,V形弦丝的交点被拉向下,且左弦的拉力增大,右弦的拉力减小。两根弦的固有频率发生不同的变化。求出两根弦的频率之差,即可求出被测物的质量。振弦式传感器的准确度较高,可达1/1000~1/10000,称量范围为100克至几百千克,但结构复杂,加工难度大,造价高。
音叉式传感器的弹性元件是音叉。音叉端部固定有压电元件,它以音叉的固有频率振荡,并可测出振荡频率。当承重台上加有被测物时,音叉拉伸方向受力而固有频率增加,增加的程度与施加力的平方根成正比。测出固有频率的变化,即可求出重物施加于音叉上的力,进而求出重物质量。音叉式传感器耗电量小,计量准确度高达1/10000~1/200000,称量范围为500g~10kg。
陀螺仪式
转子装在内框架中,以角速度ω绕X轴稳定旋转。内框架经轴承与外框架联接,并可绕水平轴 Y 倾斜转动。外框架经万向联轴节与机座联接,并可绕垂直轴Z 旋转。转子轴 (X轴)在未受外力作用时保持水平状态。转子轴的一端在受到外力(P/2)作用时,产生倾斜而绕垂直轴Z 转动(进动)。进动角速度ω与外力P/2成正比,通过检测频率的方法测出ω,即可求出外力大小,进而求出产生此外力的被测物的质量。
陀螺仪式传感器响应时间快(5秒),无滞后现象,温度特性好(3ppm), 振动影响小, 频率测量准确精度高,故可得到高的分辨率(1/100000)和高的计量准确度(1/30000~1/60000)。
电阻应变式
利用电阻应变片变形时其电阻也随之改变的原理工作。主要由弹性元件、电阻应变片、测量电路和传输电缆4部分组成。
板环式
板环式称重传感器的结构具有明确的应力流线分布、输出灵敏度高、弹性体为一整体、结构简单、受力状态稳定、易于加工等优点。目前在传感器生产中还占着较大的比例,而对这种结构传感器的设计公式目前还不很完善。因这种弹性体的应变计算比较复杂,通常在设计时把它看作为圆环式弹性体进行估算。特别是对1t及以下量程的板环式传感器设计计算误差更大,同时往往还会出现较大的非线性误差。
板环式称重传感器用途与特点:结构紧凑、防护性能好。精度高、长期稳定性好。适用于吊钩秤、机电结合秤及其它力值的测
数字式
数字称重传感器是一种能将重力转变为电信号的力-电转换装置,它主要是指集电阻应变式称重传感器、电子放大器(英文简称AMC)、模数转换技术(英文简称ADC)、微处理器(简称MCU)于一体的新型传感器。
数字称重传感器和数字计量仪表技术的发展已逐渐成为称重技术领域的新宠,其以调试简便高效、适应现场能力强等优势正在该领域崭露头角。
五、应用:
随着技术的进步,用称重传感器制造的电子衡器已广泛应用于各个行业,以实现快速、准确的物料称量,特别是随着微处理器的出现和工业生产过程自动化过程的不断改进,称重传感器已成为过程控制中必不可少的设备。称重传感器从大型罐体、料斗、吊车秤、汽车秤的重量测量,到各种原料混合分布的配料系统、生产过程中的自动检测和粉末进料控制等。目前,称重传感器应用于几乎所有的称重领域。
在应用称重传感器时需要注意的问题:
1.各类传感器的使用范围
称量传感器的选择主要取决于称量的类型和安装空间,以确保安装合适、称重安 全可靠;另一方面,应考虑制造商的建议。"对于称重传感器制造商,一般规定传感器的受力、性能指标、安装形式、结构形式、弹性材料等,如铝合金悬臂梁传感器适用于电子衡器、台秤、箱式秤等;钢悬臂梁传感器适用于电子皮带秤、分拣秤等。钢桥传感器适用于轨道衡、汽车衡等。柱式传感器适用于汽车衡、动轨秤、大吨位料斗秤等。
2.称重传感器精度水平的选择
称重传感器的精度等级包括传感器的非线性、蠕变、重复性、滞后、灵敏度等技术指标。在选择高等级传感器时,不应考虑电子秤的精度等级和成本。一般来说,非线性、非重复性和滞后三项指标之和的均方根值略高于标度。
3.称重传感器使用环境
称重传感器实际上是一种将质量信号转化为可测量信号的电信号输出装置,首先要考虑传感器的实际工作环境,这对传感器的正确选择非常重要,它关系到传感器能否正常工作及其使用寿命,甚至关系到整个衡器的可靠性和安 全性。
一般来说,高温环境会导致涂层材料的熔化、焊点的开启、弹性体应力的结构变化等;粉尘和湿度对传感器短路的影响;传感器弹性体在高腐蚀环境下的损坏或短路现象;以及电磁场对传感器输出的干扰。
六、称重传感器常见故障现象和检测方法:
1、可能引发零点变化的因素分析
(1)过载,往往会导致零点突变,输出电阻明显超出规定值;(2)冲击,同上;(3)受潮或受腐蚀,往往表现为零点的持续变化、不稳等,此时,绝缘电阻会有所降低。[检测方法] 保证传感器无负载、尽可能模拟使用状况的条件下,按照传感器的正常接线方式,在输入端施加5~12V直流电压,在输出端使用电压计测量输出电压变化,该变化与输入电压之比,折算成mV/V,与标准灵敏度(单位同为mV/V)进行比较,不应超过±1%。
2、可能引发绝缘不良的因素分析
(1)传感器电子元气件受潮,会导致绝缘电阻有所降低;(2)传感器电子元气件受到化学腐蚀,同上;(3)传感器内部线路、弹性体、屏蔽间出现短路,其阻值往往低于1KΩ。[检测方法] 使用50V超绝缘计,分别检测弹性体(外露金属部分)、屏蔽线、输入输出芯线两两之间的电阻大小,其值不应低于5000MΩ。特别注意的是:*千万不可使用绝缘计表笔测量输入和输出电阻;*对数字传感器,不能使用绝缘计进行阻抗测试。
3、可能引发桥路破坏的因素分析
(1)传感器内部电器连线开路或短路;(2)器件烧损。检测方法] 使用电阻表,对输入、输出电阻进行测量,与出厂检验值进行比对,存在明显的改变,可判断为该故障。
4、可能引发冲击阻值变化的因素分析
(1)传感器内部电器连接上出现虚焊;(2)应变计或其他粘贴件的胶层遭受破坏。检测方法] 同1、连接方式,使用木锤轻轻敲击传感器,要求传感器的输出信号不得有不稳定的变化。