小程序
传感搜
传感圈

AI Tool Pinpoints Genetic Mutations That Cause Disease

2023-10-07
关注

Google DeepMind has wielded its revolutionary protein-structure-prediction AI in the hunt for genetic mutations that cause disease.

A new tool based on the AlphaFold network can accurately predict which mutations in proteins are likely to cause health conditions — a challenge that limits the use of genomics in healthcare.

The AI network — called AlphaMissense — is a step forward, say researchers who are developing similar tools, but not necessarily a sea change. It is one of many techniques in development that aim to help researchers, and ultimately physicians, to ‘interpret’ people’s genomes to find the cause of a disease. But tools such as AlphaMissense — which is described in a 19 September paper in Science — will need to undergo thorough testing before they are used in the clinic.

Many of the genetic mutations that directly cause a condition, such as those responsible for cystic fibrosis and sickle-cell disease, tend to change the amino acid sequence of the protein they encode. But researchers have observed only a few million of these single-letter ‘missense mutations’. Of the more than 70 million possible in the human genome, only a sliver have been conclusively linked to disease, and most seem to have no ill effect on health.

So when researchers and doctors find a missense mutation they’ve never seen before, it can be difficult to know what to make of it. To help interpret such ‘variants of unknown significance,’ researchers have developed dozens of different computational tools that can predict whether a variant is likely to cause disease. AlphaMissense incorporates existing approaches to the problem, which are increasingly being addressed with machine learning.

Locating mutations

The network is based on AlphaFold, which predicts a protein structure from an amino-acid sequence. But instead of determining the structural effects of a mutation — an open challenge in biology — AlphaMissense uses AlphaFold’s ‘intuition’ about structure to identify where disease-causing mutations are likely to occur within a protein, Pushmeet Kohli, DeepMind’s vice-president of Research and a study author, said at a press briefing.

AlphaMissense also incorporates a type of neural network inspired by large language models like ChatGPT that has been trained on millions of protein sequences instead of words, called a protein language model. These have proven adept at predicting protein structures and designing new proteins. They are useful for variant prediction because they have learned which sequences are plausible and which are not, Žiga Avsec, the DeepMind research scientist who co-led the study, told journalists.

DeepMind’s network seems to outperform other computational tools at discerning variants known to cause disease from those that don’t. It also does well at spotting problem variants identified in laboratory experiments that measure the effects of thousands of mutations at once. The researchers also used AlphaMissense to create a catalogue of every possible missense mutation in the human genome, determining that 57% are likely to be benign and that 32% may cause disease.

Clinical support

AlphaMissense is an advance over existing tools for predicting the effects of mutations, “but not a gigantic leap forward,” says Arne Elofsson, a computational biologist at the University of Stockholm.

Its impact won’t be as significant as AlphaFold, which ushered in a new era in computational biology, agrees Joseph Marsh, a computational biologist at the MRC Human Genetics Unit in Edinburgh, UK. “It’s exciting. It’s probably the best predictor we have right now. But will it be the best predictor in two or three years? There’s a good chance it won’t be.”

Computational predictions currently have a minimal role in diagnosing genetic diseases, says Marsh, and recommendations from physicians’ groups say that these tools should provide only supporting evidence in linking a mutation to a disease. AlphaMissense confidently classified a much larger proportion of missense mutations than have previous methods, says Avsec. “As these models get better than I think people will be more inclined to trust them.”

Yana Bromberg, a bioinformatician at Emory University in Atlanta, Georgia, emphasizes that tools such as AlphaMissense must be rigorously evaluated — using good performance metrics — before ever being applied in the real-world.

For example, an exercise called the Critical Assessment of Genome Interpretation (CAGI) has benchmarked the performance of such prediction methods for years against experimental data that has not yet been released. “It’s my worst nightmare to think of a doctor taking a prediction and running with it, as if it’s a real thing, without evaluation by entities such as CAGI,” Bromberg adds.

This article is reproduced with permission and was first published on September 19, 2023.

  • en
您觉得本篇内容如何
评分

相关产品

EN 650 & EN 650.3 观察窗

EN 650.3 version is for use with fluids containing alcohol.

Acromag 966EN 温度信号调节器

这些模块为多达6个输入通道提供了一个独立的以太网接口。多量程输入接收来自各种传感器和设备的信号。高分辨率,低噪音,A/D转换器提供高精度和可靠性。三路隔离进一步提高了系统性能。,两种以太网协议可用。选择Ethernet Modbus TCP\/IP或Ethernet\/IP。,i2o功能仅在6通道以太网Modbus TCP\/IP模块上可用。,功能

雷克兰 EN15F 其他

品牌;雷克兰 型号; EN15F 功能;防化学 名称;防化手套

Honeywell USA CSLA2EN 电流传感器

CSLA系列感应模拟电流传感器集成了SS490系列线性霍尔效应传感器集成电路。该传感元件组装在印刷电路板安装外壳中。这种住房有四种配置。正常安装是用0.375英寸4-40螺钉和方螺母(没有提供)插入外壳或6-20自攻螺钉。所述传感器、磁通收集器和壳体的组合包括所述支架组件。这些传感器是比例测量的。

TMP Pro Distribution C012EN RF 音频麦克风

C012E射频从上到下由实心黄铜制成,非常适合于要求音质的极端环境,具有非常坚固的外壳。内置的幻像电源模块具有完全的射频保护,以防止在800 Mhz-1.2 Ghz频段工作的GSM设备的干扰。极性模式:心形频率响应:50赫兹-18千赫灵敏度:-47dB+\/-3dB@1千赫

ValueTronics DLRO200-EN 毫欧表

"The DLRO200-EN ducter ohmmeter is a dlro from Megger."

Minco AH439S1N10EN 温湿度变送器

Minco空间湿度探测器组件具有温度补偿功能,结构紧凑,重量轻。它们是为直接安装在建筑内墙上而设计的。他们的特点是集成电路传感器与稳定的聚合物元件,是由烧结不锈钢过滤器封装,加上先进的微处理器,以提供准确和可重复的测量。温度输出是可选的。,用于需要:

评论

您需要登录才可以回复|注册

提交评论

提取码
复制提取码
点击跳转至百度网盘