小程序
传感搜
传感圈

工业大数据如何驱动制造业转型升级?

2023-07-18
关注


近年来,工业大数据逐渐从概念走向落地阶段,数据基础较好的细分工业领域,已经在利用新兴的大数据等技术创造价值。


工业大数据的来源其中一部分是生产经营领域的数据,另外很大一部分则是生产设备和生产出来的高端产品与装备在运营过程中产生的机器数据。

而真正的大数据不是有了数据,把这些数据接入之后存起来就可以了,真正要做的事情是智能分析和智能决策,通过在两化融合的基础上构建的智能分析优化系统“工业大脑”进行相应的智能决策。

这些智能分析与决策离不开原有的信息化系统和自动化系统的支撑,更离不开产生这些数据的实体设备与装备。基于这些数据集成实体运行所在环境数据,在信息管理系统和自动化系统基础之上,构建具备智能分析优化能的大数据系统,达成提质、增效、降耗和控险的目的。

工业大数据可以分为三类:一部分是工业物联网数据,比如生产设备、智能产品、复杂装备24小时不断产生的数据。一部分企业信息化数据,同时还有很重要的一部分数据是外部跨产业链的数据,包括设备在运行过程中所处的环境数据,比如气象数据、地理数据、相应的环境数据,这三种数据合计才能称之为工业大数据。

工业大数据的特点:多模态、高通量以及强关联多模态在工业系统里数据种类、数据格式以及数据结构非常多,结构关系复杂。一个汽轮机里面会有上万个零部件,一个复杂装备的制造企业,它的数据种类多达三百余种,所以在工业领域里会存在数据多模态特征。

高通量即无论是生产设备还是智能装备有可能是24小时不间断产生数据的,我们以分、秒的频率采集数据,在很多应用场合甚至是毫秒级的数据。这些数据的数据量非常大,海量的设备与测点,数据采集频度高、数据吞吐总量大、数据的实时性要求高,呈现出工业大数据的“高通量”特征。

强关联真正做一个产品设计的时候,它涉及到学科与专业是非常多的,比如设计复杂装备的时候,不仅仅是涉及到结构分析,流体力学、声学、动力学、电磁辐射等等各个学科的数据都要进行关联。数据之间的“强关联”反映的就是工业的系统性及其复杂的动态关系。

基于工业大数据的特点,工业大数据的数据分析与消费互联网领域里的数据分析是有相当大的差别的。

消费互联网大数据的分析对象更多的是以互联网为支撑的交互,工业大数据实际上是以物理实体和物理实体所处的环境为分析对象,物理实体就是我们的生产设备以及生产出来的智能装备及复杂装备。在商业数据里面关注数据的相关性关系,但是在工业领域里面一定要强调数据因果性,以及模型的可靠性,一定要提升分析结果的准确率才能把分析结果反馈到真正的工业控制过程中。

工业大数据面临的挑战企业应用工业大数据面临的技术挑战。企业普遍面临数据基础薄弱的境况,企业收集的数据不够,甚至没有数据。企业真的要在数据转型有战略上的调整,它才会有较大的投入,如果它没有这种战略规划的时候,很难负担得起专业数据人才的成本。市场上也缺乏工业大数据所需的复合型人才。另外每个工业领域里都有独特的知识领域和机理形成的行业门槛,没有一个普适性的解决方案可以在工业领域里通用。行业解决方案,只会对某一个行业才能发挥相应的价值。


企业应用工业大数据面临的管理挑战。

很多合作伙伴或者客户初期并不知道数据和业务问题之间怎么关联,怎么和业务结合都不清楚,不知道数据到底能不能解决业务问题。有的企业有应用工业大数据的愿景,但是业务与工业大数据的实施路径都没有统一。工业大数据的挖掘就是把工业物联网数据与跨产业链数据以及企业信息化数据相结合,把分散在企业各个角落里的数据进行整合,挖掘这些数据融合所能产生的价值。

大数据不仅仅是物联网数据采集与存储,包括数据的管理、分析与反馈,需要在数据生命周期内构建一个闭环系统,构建这个闭环需要一个过程,不可能一蹴而就。同时,大数据的应用会涉及到企业内部管理流程和经营理念的变革,工业大数据是把工业领域内三类数据进行融合应用,真正发挥大数据的价值的场景不仅是智能制造,同时也包括产业互联网里业务模式创新,所以相应的经营理念和管理机制都要发生变革。


这是企业在管理方面面临的最大的挑战。所以有时候大家会看到,工业企业的大数据应用甚至都不仅是一个企业的CIO所能牵引的,这需要整个企业在战略层面去推动,要有明确的数据驱动的业务战略规划。

 

工业大数据的业务落地通常来讲,在与企业规划工业大数据业务落地可以从两个维度与企业一同进行思考。

一方面是从业务驱动角度来看,要思考企业的整体业务目标是什么,为了实现这个业务目标要做什么样的转型以及哪方面的能力提升,具体的业务提升和转型方向是什么;为了实现业务目标,理想的业务流程是什么,如何让这个流程跟数据流进行相应的结合和映射。

这是一个由上而下的思考过程,是企业的高层管理者、战略管理者进行思考并牵引,通过中间管理层完善与丰富,最后落地实施的过程。很多时候大数据应用确实可以解决业务问题,但也可能解决不了所有的业务问题。大数据应用真正帮助企业的不仅仅是在于具体业务问题的解决层面,它是要让企业构建对数据驾驭的能力,当企业具备了这种能力后,才能够真正让企业在内部的生产管理、对外的经营模式上产生变化,真正形成持续的创新与应用的能力。

如何利用数据进行驱动。

第一是去看现在手里有什么样的数据,这些数据从哪儿来,如果没有这些数据要怎么收集,以及这些数据的特点到底是什么,是时序数据、时空数据、智能产品产生的数据、生产设备产生的数据,数据量到底有多大;

第二是对这些数据有了了解以后,这些数据怎么保存、管理、使用,另一个比较重要的则是数据质量怎么保证。

第三是用什么样的系统、什么样的工具保证数据存储、数据管理、数据处理?同时这些数据到底如何进行集成、关联,不仅仅要把设备产生的数据拿来进行分析管理,还要在分析过程中关联周边的环境数据、地理数据等跨界数据。

 

  • 大数据
您觉得本篇内容如何
评分

相关产品

安科瑞 智慧消防管理云平台 大数据分析实时监控 云平台

它是通过互联网、物联网、大数据等先进技术对传统的消防信息管理系统进行升级改造,将传统的管理模式转化为网络化、数字化管理模式的系统。

OMEGA Engineering, Inc. 欧米茄 HH506A and HH506RA 数字测温仪

该装置具有实时数据保存模式下128个样本的数据记录能力,16组数据记录模式下的数据记录能力,最大数据容量为1024条记录。

TelephoneStuff.com 61-320 数字万用表

\功能:\ n-最小/最大-数据保持-自动/手动测距-大数字显示-数据保持-电容-频率-隔离电池室-自动断电-电池电量低指示-探头支架-带倾斜支架的橡胶防尘套-所有范围的过载保护 CAT IV-600V

Handsome 翰德圣 HDSELM V1.1 安全传感器和系统

设备全生命周期管理平台融合的物联网、云计算、大数据、人工智能、优化制造、再制造六项主流技术,通过云端模块化的架构可为企业灵活管理设备,不仅可以随时随地了解设备运行状态、发现故障隐患,还能够通过大数据分析指导企业维修

鼎信智慧科技 DX-FDS100-GF 安全监控系统

光伏电站设备故障智能诊断预警系统采用离散率、偏差率和神经网络算法,通过大数据全面覆盖在线监测光伏电站所有设备,能够多级部署,分级管控,通过对光伏电站各项数据的实时监测和分析,能够及时发现设备故障和异常,

XKCON 祥控 弹药库环境温湿度异常报警与智能监控系统 温湿度变送器

济南祥控自动化设备有限公司自主研发的XKCON祥控弹药库环境温湿度异常报警与智能监控系统采用物联网、传感器、大数据、人工智能等先进技术,能够对弹药库环境温湿度信息实现数字化、可视化管理。

山东微感 煤矿顶板离层围岩变形应力光纤监测预警系统 顶板离层围岩变形应力光纤监测预警系统

山东微感煤矿顶板离层、围岩变形应力光纤监测预警系统实现煤矿顶板离层、锚杆/锚索应力状态、围岩应力、工作面煤体超前应力等静态参数实时在线监测;与光纤微震动态监测系统有机融合,提升了大数据分析能力,为矿山深部开采动力灾害监测预警提供核心技术支撑

温霖科技 F6 “数字哨兵”健康核验一体机

这款“数字哨兵”又叫“F6系列热成像人脸识别设备”,通行人员只需站在指定位置进行人脸测温,同时将随申码靠近扫码处,或将身份证、社保卡放置于机器上进行识别,基于上海大数据中心和健康云平台大数据支持,可快速核验健康码

深圳圣凯安 SKA17-18118745715 水质检测仪器

华谊环保水质分析仪以水质传感器为核心,结合现代传感技术、自动测量技术、自动控制技术、网络传输技术与大数据分析处理技术,构建了一个综合性的小型在线自动监测系统。

云传物联 小型水质自动监测系统 多参数监测系统

方案背景 随着生态环境监测网络的发展和水质网格化监测的推广,水环境自动监测站需要进行更密集的布点,以满足污染溯源、水质预警、河长考核等大数据应用需求

评论

您需要登录才可以回复|注册

提交评论

中自网

这家伙很懒,什么描述也没留下

关注

点击进入下一篇

积跬步以至千里 本土GPU企业再创佳绩

提取码
复制提取码
点击跳转至百度网盘