小程序
传感搜
传感圈

Soft Robots Take Steps toward Independence

2023-02-28
关注

Constructed from delicate, flexible and lifelike materials, soft robots have the potential to improve on their clunky, metal-bodied predecessors. Such machines could more nimbly explore other planets, gently collect organisms from the ocean depths and even lend surgeons a hand. But stubborn design challenges have long held them back from making it out of the lab and into our lives. Now a new generation of soft robots is navigating, growing and self-repairing its way to meeting researchers' lofty expectations.

Squishy materials let robots deform to adapt to changing environments, such as constricting tunnels. Soft robots can also handle fragile materials, such as human organs or brittle rocks, without crushing them. Even some mostly rigid-bodied robots, including the famously agile walkers made by Boston Dynamics, incorporate soft parts for better movement. Many developments in soft robotics are inspired by traits of living organisms, such as octopuses' flexibility or the high water content of jellyfish. And new designs seek something less tangible: animal-like independence.

“The robotics community has been continuously focusing on the science and engineering of autonomy,” says Massachusetts Institute of Technology roboticist and computer scientist Daniela Rus. “We have made advancements on the soft body components and also on the algorithmic control ... and we are now using these advancements to make increasingly more capable and self-contained autonomous soft robots.”

When independently exploring treacherous territory, soft robots are more prone to cuts and punctures than rigid machines are. One group of researchers, inspired by the self-healing properties of human skin, recently created an experimental robot that can bounce back from small injuries. The team described its study findings in Science Advances.

“If we have our druthers and achieve robots that operate for years at a time while performing dexterous tasks, then many opportunities open up for us,” says study co-author Robert Shepherd, an engineer at Cornell University. “One clear example is space exploration—perhaps building research habitats on the moon or even surveying the oceans of Europa. In these remote operating environments, robots will accumulate damage and may not have anyone around to repair them.”

Shepherd and his team designed a soft robot that not only heals damage but doesn't need to be told when to do so. Using fiber-optic sensors, the robot can detect when its material has been punctured. Then it uses a hyperelastic material, called polyurethane urea elastomer, to quickly heal the wound. The robot is also programmed to move in a new direction after damage—ideally escaping whatever caused it. Later work could expand these repairs to bigger missing chunks and holes.

Another team created a soft robot that “grows” like a plant or fungus for a study published last year in the Proceedings of the National Academy of Sciences USA. Growing robots could burrow underground or lay new infrastructure on other planets. But to grow, soft robots typically have to drag material behind them and use it to 3-D-print new structures. This can hinder a robot's work like lugging around a garden hose would for a person, says study co-author Chris Ellison, a University of Minnesota engineer and materials scientist. “If you drag your garden hose, and you turn a corner around a tree, the force on the hose goes up,” he says. And it continues to increase exponentially with each bend.

The researchers turned to plants for a solution. “They don't extend their roots by dragging more roots behind them,” Ellison says. “They transport liquids, and then they transform those liquids to solids, and that ultimately is what builds a structure.” His team's new robot uses light to solidify a liquid while spitting it out of a small hole to form a tube, which extends from its launching point to wherever it needs to go. The robot can control the tube's shape as it grows, allowing for navigation of complicated paths without running into the garden hose problem. Robots might one day use this technology to smoothly inspect pipes underground or to pass through the human body for medical applications, Ellison adds.

Engineers have also made major progress in improving soft robots' sensing and motion abilities, which will aid deployment in remote environments. For example, Rus's group recently built a robot with networks of air-filled channels throughout its body. It can measure pressure changes within these channels to determine where its body parts are in space, similar to human proprioception. Other groups have experimented with various types of sensors, artificial muscles and machine learning to create smoother movement and precise perception.

Building soft robots that can work, heal and grow independently could change many areas of human life. “Soft robot hands are enabling a new age for manufacturing,” Rus says. Dexterous robots could fit into factory settings more easily if they had humanlike hands that could use the same tools we do, notes ETH Zürich roboticist Robert Katzschmann, who was not involved in the above studies.

Soft robots could also find a place in hospitals. Working alongside nurses and doctors, a robot could help softly and safely hold organs in place during surgery. “Helping hands could make medicine a bit less costly,” Katzschmann says, “so you don't need 10 people in an OR. You could do with just one or two.” Ellison's team says its robot could someday grow through tissue and search for cancerous tumors, potentially replacing a dangerous surgery altogether.

“I think soft robots are an avenue to endurance and agility not seen before in artificial machines,” Shepherd says. With heightened sensing and motion skills, robust compositions, and newfound independence, these squishy machines' future looks solid.

参考译文
软体机器人迈向独立
柔软的机器人由精致、灵活和逼真的材料构成,有潜力改进它们笨重的金属体前辈。这样的机器可以更灵活地探索其他星球,从海洋深处收集生物,甚至可以帮助外科医生。但长期以来,顽固的设计挑战阻碍了它们走出实验室,进入我们的生活。现在,新一代软机器人正在导航,成长和自我修复的方式,以满足研究人员'崇高的期望。柔软的材料可以让机器人变形以适应不断变化的环境,比如狭窄的隧道。软体机器人还可以处理脆弱的材料,比如人体器官或易碎的岩石,而不会压碎它们。即使是一些主要是刚性的机器人,包括波士顿动力公司(Boston Dynamics)生产的以敏捷著称的步行者,也加入了柔软的部分,以便更好地移动。软体机器人的许多发展都是受到生物体特征的启发,例如章鱼'水母的灵活性或高含水量。新的设计寻求一些无形的东西:动物般的独立性。麻省理工学院机器人专家和计算机科学家丹妮拉·罗斯说:“机器人界一直在关注自主的科学和工程。”“我们在软体部件和算法控制方面都取得了进展……我们现在正在利用这些进步来制造越来越有能力和自给自足的自主软体机器人。“在独立探索危险区域时,软体机器人比刚性机器更容易被割伤和刺穿。一组研究人员受到人类皮肤自愈特性的启发,最近发明了一种实验性机器人,可以从小损伤中恢复。研究小组在《科学进展》杂志上描述了他们的研究结果。研究报告的合著者、康奈尔大学的工程师罗伯特·谢泼德说:“如果我们有自己的选择,让机器人在执行灵巧任务的同时,一次操作数年,那么我们就有很多机会。”“一个明显的例子是太空探索——也许在月球上建造研究栖息地,甚至勘测木卫二的海洋。在这些远程操作环境中,机器人会累积损伤,而且周围可能没有人来修复它们。Shepherd和他的团队设计了一款软体机器人,它不仅可以治愈损伤,而且不需要被告知何时这样做。使用光纤传感器,机器人可以检测到它的材料何时被刺穿。然后它使用一种称为聚氨酯尿素弹性体的超弹性材料来快速愈合伤口。机器人还被设定在损伤后向一个新的方向移动——理想情况下是逃离造成损伤的原因。后来的工作可以将这些修复扩大到更大的缺失块和洞。另一个团队为去年发表在《美国国家科学院院刊》上的一项研究创造了一种像植物或真菌一样“生长”的软体机器人。不断成长的机器人可以在地下挖洞,或者在其他星球上建造新的基础设施。但为了发展,软体机器人通常必须将材料拖在身后,并用它来3d打印新结构。这项研究的合著者、明尼苏达大学的工程师和材料科学家克里斯·埃里森(Chris Ellison)说,这可能会阻碍机器人的工作,就像人拖着花园水管一样。他说:“如果你拖着花园的软管,在一棵树周围转弯时,软管上的力就会上升。”随着每一次弯曲,它都呈指数增长。 研究人员从植物中寻找解决方案。“他们不会通过拖拽更多的根来延伸自己的根,”埃里森说。“它们运输液体,然后将这些液体转化为固体,最终形成结构。”他的团队'的新机器人利用光来固化液体,同时将液体从一个小孔中吐出来,形成一个管子,从它的发射点延伸到它需要去的任何地方。机器人可以控制管道's形状,因为它生长,允许导航复杂的路径,而不会遇到花园软管的问题。埃里森补充说,机器人有一天可能会利用这项技术顺利地检查地下管道,或者通过人体进行医疗应用。工程师们在改进软体机器人方面也取得了重大进展'传感和运动能力,这将有助于部署在偏远环境。例如,rus&# 39;s团队最近制造了一个机器人,它的全身都是充满空气的通道网络。它可以测量这些通道内的压力变化,以确定其身体部位在空间中的位置,类似于人类的本体感觉。其他研究小组已经尝试了各种类型的传感器、人造肌肉和机器学习,以创造更流畅的运动和精确的感知。制造能够独立工作、治疗和成长的软体机器人可能会改变人类生活的许多领域。罗斯说:“柔软的机器人手正在为制造业开启一个新时代。”ETH Zürich机器人学家罗伯特·卡茨曼(Robert Katzschmann)没有参与上述研究,他指出,如果灵巧的机器人有像人类一样的手,可以使用和我们一样的工具,它们就能更容易地适应工厂环境。软体机器人也可以在医院找到一席之地。在手术过程中,机器人可以与护士和医生一起工作,轻柔而安全地固定器官。“伸出援助之手可以让药物成本降低一点,”卡茨曼说,“所以你不需要10个人在手术室里。你只要一两个就够了。”埃里森(Ellison's)的团队表示,他们的机器人有一天可以在组织中生长并搜索癌性肿瘤,有可能完全取代危险的手术。Shepherd说:“我认为软体机器人是一种在人工机器中从未见过的耐力和敏捷性的途径。”随着传感和运动技能的提高,稳健的成分,和新发现的独立性,这些黏糊糊的机器'未来看起来很稳定。
  • en
您觉得本篇内容如何
评分

相关产品

EN 650 & EN 650.3 观察窗

EN 650.3 version is for use with fluids containing alcohol.

Acromag 966EN 温度信号调节器

这些模块为多达6个输入通道提供了一个独立的以太网接口。多量程输入接收来自各种传感器和设备的信号。高分辨率,低噪音,A/D转换器提供高精度和可靠性。三路隔离进一步提高了系统性能。,两种以太网协议可用。选择Ethernet Modbus TCP\/IP或Ethernet\/IP。,i2o功能仅在6通道以太网Modbus TCP\/IP模块上可用。,功能

雷克兰 EN15F 其他

品牌;雷克兰 型号; EN15F 功能;防化学 名称;防化手套

Honeywell USA CSLA2EN 电流传感器

CSLA系列感应模拟电流传感器集成了SS490系列线性霍尔效应传感器集成电路。该传感元件组装在印刷电路板安装外壳中。这种住房有四种配置。正常安装是用0.375英寸4-40螺钉和方螺母(没有提供)插入外壳或6-20自攻螺钉。所述传感器、磁通收集器和壳体的组合包括所述支架组件。这些传感器是比例测量的。

TMP Pro Distribution C012EN RF 音频麦克风

C012E射频从上到下由实心黄铜制成,非常适合于要求音质的极端环境,具有非常坚固的外壳。内置的幻像电源模块具有完全的射频保护,以防止在800 Mhz-1.2 Ghz频段工作的GSM设备的干扰。极性模式:心形频率响应:50赫兹-18千赫灵敏度:-47dB+\/-3dB@1千赫

ValueTronics DLRO200-EN 毫欧表

"The DLRO200-EN ducter ohmmeter is a dlro from Megger."

Minco AH439S1N10EN 温湿度变送器

Minco空间湿度探测器组件具有温度补偿功能,结构紧凑,重量轻。它们是为直接安装在建筑内墙上而设计的。他们的特点是集成电路传感器与稳定的聚合物元件,是由烧结不锈钢过滤器封装,加上先进的微处理器,以提供准确和可重复的测量。温度输出是可选的。,用于需要:

评论

您需要登录才可以回复|注册

提交评论

scientific

这家伙很懒,什么描述也没留下

关注

点击进入下一篇

2023年数字化战略中不包括物联网的后果

提取码
复制提取码
点击跳转至百度网盘