小程序
传感搜
传感圈

Google’s Quantum Computer Hits Key Milestone by Reducing Errors

2023-02-26
关注

Physicists at Google have reached what they describe as their second milestone along the path to a useful quantum computer. At a laboratory in Santa Barbara, California, they have demonstrated that they can lower the error rate of calculations by making their quantum code bigger.

The feat, reported in Nature on 22 February, follows up on a celebrated 2019 experiment in which a Google quantum computer achieved ‘quantum advantage’ — by performing a calculation that would have taken thousands of years on an ordinary computer.

Error correction is an inescapable requirement if quantum computers are to fulfil their promise of solving problems that are beyond the reach of classical machines — such as factoring large whole numbers into primes, or understanding the detailed behaviour of chemical catalysts.

“The Google achievement is impressive, since it is very hard to get better performance with large code size,” says Barbara Terhal, a theoretical physicist who specializes in quantum error correction at the Delft University of Technology in the Netherlands. The improvement is still small, the Google researchers admit, and the error rate needs to drop much more. “It came down by a little; we need it to come down a lot,” said Hartmut Neven — who oversees the quantum-computing division at Google’s headquarters Mountain View, California — during a press briefing.

Correcting mistakes

All computers are subject to errors. An ordinary computer chip stores information in bits (which can represent 0 or 1) and copies some of the information into redundant ‘error correction’ bits. When an error occurs — as a result of stray electrons crossing an imperfectly insulating barrier, say, or a cosmic-ray particle disturbing the circuit — the chip can automatically spot the problem and fix it.

“In quantum information we can’t do that,” said Julian Kelly, Google’s director of quantum hardware, at the press briefing. Quantum computers are based on quantum states called qubits, which can exist in a mixture of ‘0’ and ‘1’ states. A qubit cannot be read out without its full quantum state being irretrievably lost, which means that its information cannot be simply copied onto redundant qubits.

But theoreticians have developed elaborate ‘quantum error correction’ schemes to address this problem. These typically rely on encoding a qubit of information — called a logical qubit — in a collection of physical qubits rather than a single one. The machine can then use some of the physical qubits to check on the health of the logical qubit and correct any errors. The more physical qubits there are, the better they can suppress an error. “The advantage of using multiple qubits for quantum error correction is that it scales,” says Terhal.

But adding more physical qubits also increases the chances that two of them will be affected by an error simultaneously. To address this issue, the Google researchers performed two versions of a quantum error-correction procedure. One, using 17 qubits, was able to recover from one error at a time. A larger version used 49 qubits and could recover from two simultaneous errors, and with slightly better performance than the smaller version could achieve. “The improvement currently is very small, and it is no guarantee yet that using even larger codes will give even better performance,” says Terhal.

Joe Fitzsimons, a physicist at Horizon Quantum in Singapore, says that various laboratories have made big steps towards effective error correction, and that Google’s latest result has many of the required features. But qubits also need to store information for sufficient time for the computer to carry out calculations, and Google’s team has yet to achieve that feat. “For a convincing demonstration of scalable error correction, we would want to see improvement in lifetimes”, as the system scales up, says Fitzsimons.

Google has set a quantum-computing roadmap for itself with six key milestones. Quantum advantage was the first, and the latest result was the second. Milestone six is a machine made of one million physical qubits, encoding 1,000 logical qubits. “At that stage, we can confidently promise commercial value,” says Neven.

Superconducting qubits are only one of several approaches to building a quantum computer, and Google still thinks it has the best chance of succeeding, says Neven. “We would pivot in a heartbeat if it becomes very clear that another approach will get us to a useful quantum computer quicker.”

This article is reproduced with permission and was first published on February 22, 2023.

参考译文
谷歌的量子计算机通过减少错误达到关键里程碑
谷歌的物理学家们已经达到了他们所说的通向有用量子计算机的道路上的第二个里程碑。在加利福尼亚州圣巴巴拉市的一个实验室里,他们已经证明,他们可以通过增大量子代码来降低计算的错误率。2月22日《自然》杂志报道了这一壮举,此前在2019年的一项著名实验中,谷歌量子计算机通过执行在普通计算机上需要数千年才能完成的计算,实现了“量子优势”。如果量子计算机要实现其解决经典计算机无法解决的问题的承诺——比如将大整数分解成质数,或者理解化学催化剂的详细行为——纠错是一个不可避免的要求。荷兰代尔夫特理工大学(Delft University of Technology)专门研究量子纠错的理论物理学家芭芭拉·泰哈尔(Barbara Terhal)说:“谷歌的成就令人印象深刻,因为在大代码大小的情况下很难获得更好的性能。”谷歌的研究人员承认,改进仍然很小,错误率需要进一步降低。“它下降了一点;我们需要大幅降低成本,”在谷歌总部加州山景城负责量子计算部门的哈特穆特·内文在新闻发布会上说。所有的计算机都会出错。普通的计算机芯片以位(可以表示0或1)存储信息,并将部分信息复制到冗余的“纠错”位。当出现错误时——比如由于杂散电子穿过了不完美的绝缘屏障,或者宇宙射线粒子干扰了电路——芯片可以自动发现问题并修复它。谷歌的量子硬件总监朱利安·凯利(Julian Kelly)在新闻发布会上说:“在量子信息领域,我们不能这样做。”量子计算机基于被称为量子位的量子态,它可以以“0”和“1”的混合状态存在。一个量子位不能被读出,除非它的完整量子态不可挽回地丢失,这意味着它的信息不能简单地复制到多余的量子位上。但理论家们已经开发了详细的“量子纠错”方案来解决这个问题。这些通常依赖于将一个量子比特的信息(称为逻辑量子比特)编码在物理量子比特的集合中,而不是单个量子比特。然后,机器可以使用一些物理量子位来检查逻辑量子位的健康状况,并纠正任何错误。物理量子位越多,就越能抑制错误。“使用多个量子位进行量子纠错的优势在于它可以扩展,”Terhal说。但是增加更多的物理量子位也增加了其中两个同时受到错误影响的几率。为了解决这个问题,谷歌的研究人员进行了两个版本的量子纠错程序。其中一个使用17个量子比特,一次可以从一个错误中恢复。较大版本使用49个量子位,可以从两个同时错误中恢复,并且性能略好于较小版本。“目前的改进非常小,而且还不能保证使用更大的代码就能提供更好的性能,”Terhal说。新加坡Horizon Quantum的物理学家乔·菲茨西蒙斯(Joe Fitzsimons)表示,各个实验室已经在有效纠错方面取得了重大进展,谷歌的最新成果具有许多必需的特征。但量子比特也需要存储信息,以便计算机有足够的时间进行计算,谷歌的团队还没有实现这一壮举。Fitzsimons说:“对于可伸缩纠错的令人信服的演示,我们希望看到生命周期的改善”,随着系统的扩展。 谷歌为自己制定了量子计算路线图,其中有六个关键里程碑。量子优势是第一,最新的结果是第二。里程碑六是一台由100万个物理量子比特组成的机器,编码1000个逻辑量子比特。“在那个阶段,我们可以自信地承诺商业价值,”Neven说。超导量子比特只是构建量子计算机的几种方法之一,谷歌仍然认为它最有可能成功,Neven说。“如果很明显,另一种方法可以让我们更快地得到有用的量子计算机,我们就会立即转向。”本文经许可转载,首次发表于2023年2月22日。
  • en
您觉得本篇内容如何
评分

相关产品

EN 650 & EN 650.3 观察窗

EN 650.3 version is for use with fluids containing alcohol.

Acromag 966EN 温度信号调节器

这些模块为多达6个输入通道提供了一个独立的以太网接口。多量程输入接收来自各种传感器和设备的信号。高分辨率,低噪音,A/D转换器提供高精度和可靠性。三路隔离进一步提高了系统性能。,两种以太网协议可用。选择Ethernet Modbus TCP\/IP或Ethernet\/IP。,i2o功能仅在6通道以太网Modbus TCP\/IP模块上可用。,功能

雷克兰 EN15F 其他

品牌;雷克兰 型号; EN15F 功能;防化学 名称;防化手套

Honeywell USA CSLA2EN 电流传感器

CSLA系列感应模拟电流传感器集成了SS490系列线性霍尔效应传感器集成电路。该传感元件组装在印刷电路板安装外壳中。这种住房有四种配置。正常安装是用0.375英寸4-40螺钉和方螺母(没有提供)插入外壳或6-20自攻螺钉。所述传感器、磁通收集器和壳体的组合包括所述支架组件。这些传感器是比例测量的。

TMP Pro Distribution C012EN RF 音频麦克风

C012E射频从上到下由实心黄铜制成,非常适合于要求音质的极端环境,具有非常坚固的外壳。内置的幻像电源模块具有完全的射频保护,以防止在800 Mhz-1.2 Ghz频段工作的GSM设备的干扰。极性模式:心形频率响应:50赫兹-18千赫灵敏度:-47dB+\/-3dB@1千赫

ValueTronics DLRO200-EN 毫欧表

"The DLRO200-EN ducter ohmmeter is a dlro from Megger."

Minco AH439S1N10EN 温湿度变送器

Minco空间湿度探测器组件具有温度补偿功能,结构紧凑,重量轻。它们是为直接安装在建筑内墙上而设计的。他们的特点是集成电路传感器与稳定的聚合物元件,是由烧结不锈钢过滤器封装,加上先进的微处理器,以提供准确和可重复的测量。温度输出是可选的。,用于需要:

评论

您需要登录才可以回复|注册

提交评论

scientific

这家伙很懒,什么描述也没留下

关注

点击进入下一篇

2023年数字化战略中不包括物联网的后果

提取码
复制提取码
点击跳转至百度网盘